Environmental exposure to emissions from emerging nicotine delivery devices

Maciej L. Goniewicz, PhD, PharmD
Associate Professor of Oncology
Department of Health Behavior
Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
Secondhand emissions from ENDS devices

Systemic absorption in bystanders

Potential health effects in bystanders
SECONDHAND EXPOSURE FROM ENDS VS. TOBACCO CIGARETTES

• We compared secondhand exposure with ENDS emissions and tobacco smoke generated by 5 dual users.

• We measured selected airborne markers of secondhand exposure: nicotine, aerosol particles (PM$_{2.5}$), carbon monoxide, and volatile organic compounds (VOCs) in an exposure chamber.

• The study showed that e-cigarettes are a source of secondhand exposure to nicotine but not to combustion toxicants.

Source: Czogala et al. Nicotine Tob Res; 2014
Pilot data highlighted that differences in products and behavior can contribute to possible secondhand and thirdhand exposure to nicotine.
STUDY OBJECTIVES

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Puffing Behavior</td>
<td>Visual assessment</td>
</tr>
<tr>
<td>2. Particulate Matter (PM$_{2.5}$)</td>
<td>TSI personal aerosol monitor</td>
</tr>
<tr>
<td>3. Airborne Nicotine</td>
<td>Sorbent tube sampling/ GC-NPD</td>
</tr>
<tr>
<td>4. Surface Nicotine</td>
<td>Surface wipe sampling/ GC-MS</td>
</tr>
</tbody>
</table>
STUDY DESIGN

- Smokers are randomized to the order of the e-cigarette devices
- Take assigned device home to practice using before next study visit
- Session #2-7 participants puff on assigned device every 30 seconds for 10 minutes (20 puffs total)
PRODUCTS

Disposable
- 1.8%

Rechargeable
- 2.4%

E-Cigar
- 1.8%

E-Go
- 2.4% e-liquid

Vaporizer (MOD)
- 2.4% e-liquid

E-Pipe
- 2.4% e-liquid
Particulate Matter (PM$_{2.5}$) Sampling

Airborne Nicotine Sampling

XAD-4 sorbent tube

Surface Nicotine Sampling - Wall

Surface Nicotine Sampling - Floor
METHODS

START

10 Minute Smoking/Vaping Session

10 Minute Baseline

10 Minute Post Session

Video Record Smoking/Vaping Session

Collect Baseline Surface Wipe Samples

Collect Post Session Surface Wipe Samples

Post Surface Nicotine Sampling

GilAir Pump ON

GilAir Pump OFF

Baseline Surface Nicotine Sampling

Particulate Matter, PM$_{2.5}$ Sampling

STOP Airborne Nicotine Sampling

START Airborne Nicotine Sampling
RESULTS: PUFFING BEHAVIOR

Tobacco Cigarette Disposable MOD
RESULTS

Cigarette* Control Emissions Profile

*Calculated Using Calibration Factor = 0.32
Real-Time PM$_{2.5}$ Emissions for One Participant, by Product

Rechargeable

e-Go

Disposable

e-Pipe

Vaporizer

e-Cigar

Real-time PM$_{2.5}$ Emissions
Average Crude PM$_{2.5}$ Emissions per Session by Product Type

*Borderline Significant by paired t-test (p=0.053). All other differences in emission between before and during session groups were statistically significant (p < 0.05).
Adjusted* Average PM$_{2.5}$ Emitted During Session by Product

*Adjusted defined as Average PM$_{2.5}$ during session less average PM$_{2.5}$ before the session
Dashed Line = 12.1 µg/m3 = Mean PM$_{2.5}$ (µg/m3) emitted across all products
†: Mean PM$_{2.5}$ was significantly different from Rechargeable by LSD Test (p<0.05)
RESULTS: AIRBORNE NICOTINE

Average Nicotine Detected During 1 Hour Sampling Period ($\mu g/m^3$)
RESULTS: PUFFING BEHAVIOR

Three different participants using a MOD

Participant 1

Participant 2

Participant 3
<table>
<thead>
<tr>
<th>Puffing Behavior</th>
<th>Airborne Nicotine</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Varies based on the product used and by the participant</td>
<td>• 23% of sorbent tubes contained detectable amounts</td>
</tr>
<tr>
<td>• The more palatable the product, the greater amounts of aerosol released</td>
<td>• Pipe had the highest amount of detectable airborne nicotine and rechargeable device had the lowest</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Particulate Matter (PM$_{2.5}$)</th>
<th>Surface Nicotine</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Rechargeable device released the greatest amount and the disposable device released the lowest</td>
<td>• No detectable nicotine found</td>
</tr>
<tr>
<td>• Aerosol lingered in the air after vaping session was complete</td>
<td></td>
</tr>
</tbody>
</table>
Secondhand emissions from ENDS devices → Systemic absorption in bystanders → Potential health effects in bystanders
Six nonusers of nicotine-containing products were exposed to secondhand aerosol from ad libitum ENDS use by three vapers for 2 h during two separate sessions (disposables, tank-style).

Pre-exposure (baseline) and post-exposure peak levels (Cmax) of cotinine were measured in nonusers’ serum over a 6-hour follow-up.

Median changes in cotinine for disposable exposure were **0.007 ng/ml** serum.

For tank-style exposure they were **0.041 ng/ml** serum.
Secondhand emissions from ENDS devices

Systemic absorption in bystanders

Potential health effects in bystanders
SECONDHAND ENDS AEROSOL EXPOSURE AND ASTHMA EXACERBATIONS AMONG YOUTH WITH ASTHMA

- Youth who participated in the 2016 Florida Youth Tobacco survey (aged 11-17 years) with a self-reported diagnosis of asthma (N = 11,830) reported asthma attacks in the past 12 months, demographic characteristics, cigarette use, cigar use, hookah use, ENDS use, past 30-day secondhand smoke exposure, and past 30-day secondhand ENDS aerosol exposure.

- Overall, 21% of youth with asthma reported having an asthma attack in the past 12 months, and 33% reported secondhand ENDS aerosol exposure.

- Secondhand ENDS aerosol exposure was associated with higher odds of reporting an asthma attack in the past 12 months, adjusting for covariates (adjusted OR, 1.27; 95% CI, 1.11-1.47).

Limitations:

- Causality cannot be established: The cross-sectional study design limits ability to determine the temporal sequences between secondhand exposure to ENDS aerosols and asthma exacerbations

- Recall bias: not all youth may be aware of their asthma status and secondhand exposures

- Secondhand exposure to ENDS aerosols was measured in the past 30 days, whereas asthma attacks were measured within the past 12 months
FUTURE DIRECTIONS

• Future research should examine the chemical composition of aerosol from ENDS devices.

• Future research should also investigate realistic *ad lib* ENDS product usage

• Increasing the total exposure period and the number of participants may allow for more accurate modeling of real-world ENDS product usage and resulting aerosol emissions

EXPOSURE = CONCENTRATION x DURATION